
Waterloo Fall 2021 Local
,

Problem A. Mountain Skyline
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Sometimes a high mountain can look smaller than a lower one because it is further away. The low mountain
could even hide the higher one entirely. Sometimes this makes it tricky to identify which mountain is which.
Your task in this problem is to identify the mountains visible to an observer.

For this problem, assume a flat world. Each mountain is a downward-sloping cone with a slope of 45
degrees, so the radius of the base of each mountain (at altitude 0) is equal to its height. The cones of
different mountains can intersect each other. The peak of each mountain is given as a triple of integer
coordinates in a 3-dimensional Cartesian coordinate system, with −10000 ≤ x, y ≤ 10000, 0 < z ≤ 10000.
Here, z is the altitude of the peak mountain. The observer is at coordinate location 0, 0, 0. Neither the
observer nor the peak of any mountain is inside (or on the border of) the cone of any other mountain. If
a peak appears to the observer precisely behind the edge or peak of another mountain, it is considered
not to be visible.

Input
The first line contains an integer 1 ≤ n ≤ 1000, the number of mountains. The next n lines each contain
three space-separated integers −10000 ≤ x, y ≤ 10000, 1 ≤ z ≤ 10000, the coordinates of the peak of
each mountain, followed by a sequence of at most 30 uppercase letters, the name of the mountain. All
mountain names are unique.

Output
Output the names of the mountain peaks visible to the observer, one per line, in clockwise order. That
is, start in the direction of the positive y-axis, then move towards to positive x-axis, then to the negative
y-axis, then to the negative x-axis, and finally back to the positive y-axis. A mountain peak exactly on
the positive y-axis should be listed at the beginning rather than at the end of the list. If two peaks appear
one exactly above the other, list the higher one first.

Examples
standard input standard output

3
0 10000 8849 EVEREST
10000 0 5959 LOGAN
0 -10000 4808 BLANC

EVEREST
LOGAN
BLANC

6
8 0 5 FUJI
9 1 5 MATTERHORN
9 0 5 KEBNEKAISE
9 -1 5 FAGRADALSFJALL
16 0 10 KILIMANJARO
120 0 80 DENALI

MATTERHORN
DENALI
FUJI
FAGRADALSFJALL

Page 1 of 7

Waterloo Fall 2021 Local
,

Problem B. Noise
Input file: standard input
Output file: standard output
Time limit: 6 seconds
Memory limit: 1024 megabytes

You want to write an app where you can record a short fragment of a song and it will tell you which
song it is. In your app you represent audio as an array of the amplitude of the audio wave every 100
microseconds (the “pulse-code modulation PCM” raw audio format).

For this problem, you are focusing on the case where we have a single song represented by the array
a1, a2, . . . , an, and a recorded fragment represented by the array b1, b2, . . . , bm. You now wish to count
how many times the recorded fragment b occurs inside the song a.

However, you want to take into account that the microphone used to record b is not always perfect —
there might be some noise added. In particular, if your microphone measured value bi, it could be the
case that the true value is actually bi − 1, bi or bi + 1. Note that it is possible for the recording to have
different noise in different entries. E.g. if the true array is [1, 2, 3, 4] it could be the case that the recorded
array would be [2, 2, 2, 5].

You thus want to count the number of possible occurrences of b inside a, when taking this noise into
account. In particular, given arrays a and b of length n and m respectively, you want to count how many
offsets x (0 ≤ x ≤ n−m) there are such that bi − 1 ≤ ax+i ≤ bi + 1 for all 1 ≤ i ≤ m.

Input

• The first line contains two space-separated integers n and m (1 ≤ m ≤ n ≤ 400 000).

• The next line contains n integers: a1 a2 . . . an (1 ≤ ai ≤ 1 000 000).

• The final line contains m integers: b1 b2 . . . bm (1 ≤ bi ≤ 1 000 000).

Output
Output a single integer, the answer to the problem.

Examples
standard input standard output

5 3
1 2 3 4 5
2 3 4

3

5 2
100 199 300 201 299
200 300

2

3 3
1 1 1
1 2 3

0

Page 2 of 7

Waterloo Fall 2021 Local
,

Problem C. Bus Connections
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Sometimes there is a bus that goes directly from your current location to your destination, which is
convenient. Other times, you may need to take two or more buses and switch between them to reach your
final destination. It’s annoying that when switching from one bus to another, you often need to wait for
the next bus to arrive. Wouldn’t it be nice if you could time your trip such that you never have to wait for
a connection, that you reach a stop in one bus at exactly the time that your next connecting bus arrives?

Input
The first line of input contains an integer 1 ≤ b ≤ 1000, the number of buses you need to take to reach
your destination. The following b lines each describe the schedule of a bus route, in the order that you
need to take them. Each line contains three space-separated integers 0 ≤ t ≤ 1, 000, 000, 1 ≤ i ≤ 1000,
1 ≤ d ≤ 1000. The first integer t is the time at which the first bus on the route arrives at the stop at
which you need to get on it. The arrival time is specified in minutes since noon on January 1, 2021. The
second integer i specifies the interval of buses on this route. Thus, buses on this route will arrive at the
stop at times t, t+ i, t+2i, t+3i, ... The third integer d is the duration of time in minutes that you need
to ride on this bus before reaching the stop at which you get off. After this time, you get off the current
bus and get on the following one.

Output
Output a line containing a single integer, the earliest time (in minutes since noon on January 1, 2021) at
which you should get on the first bus such that you can then transfer to all the other buses in sequence
without ever having to wait when switching buses. If there is no such time, output -1.

Examples
standard input standard output

3
101 5 100
100000 7 200
0 4 300

99956

2
0 6 9
0 10 9

-1

8
122 997 491
808 991 290
172 983 560
928 977 101
570 971 592
357 967 123
429 953 835
199 947 295

526173665553865384027818

Note
First sample: Take the first bus at time 99956 (which departs every 5 minutes starting at time 101). Then
you arrive at the second bus at time 100056, which perfectly times a departure. You finally swap from
the second to third bus at time 100256.

Page 3 of 7

Waterloo Fall 2021 Local
,

Second sample: The arrival time of the first bus never coincides with the departure time of the second
bus.

Page 4 of 7

Waterloo Fall 2021 Local
,

Problem D. Not Long Enough
Input file: standard input
Output file: standard output
Time limit: 1.5 seconds
Memory limit: 256 megabytes

Alice has n 2-dimensional vectors but Bob thinks that these vectors are not long enough.

Alice wants to find a subset of these vectors such that their sum is as long as possible.

Input
First line contains a single integer n. Next n lines contain 2 integers each, xi and yi, coordinates of the
i-th vector.

1 ≤ n ≤ 2 · 105,
−104 ≤ xi, yi ≤ 104.

Output
Print one integer — squared length of the longest possible vector that can be created.

Example
standard input standard output

4
1 0
0 1
1 1
-1 -1

8

Note
In the sample, the sum of the first 3 vectors is (2, 2), resulting in the squared length of 8.

Page 5 of 7

Waterloo Fall 2021 Local
,

Problem E. Frogger
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

You may have played the classic video game Frogger. In this game, a frog must cross a busy street without
getting run over by one of the many fast cars. Then the frog must cross a river by jumping onto floating
logs without falling in the water.

In this problem, we focus on the second part of the game, in which the frog crosses a river using floating
logs. The game is played on a rectangular grid. Each log is the size of one square of the grid. Unlike in
the real game, logs can float vertically in addition to horizontally.

This means that logs can also collide with each other. In this case, multiple logs can just be on the same
grid square at the same time, and they just pass through each other without changing their direction and
speed. When this happens, this is the only time that the frog can switch from one log to another. At any
time, the frog is always on some log and travels with that log. If at any point in time, the log that the
frog is on is on the same grid square as another log, the frog may choose to switch and continue travelling
on the other log.

The input describes the state of the river at time t = 0. Specifically, the input defines the position of each
log and and the direction that it travels in, either up (^), down (v), left (<), or right (>). It is guaranteed
that at time t = 0, there is some log in the top-left corner of the grid, where the frog starts. At each time
step, all the logs move simultaneously, at the same speed, by one grid square in their specified directions.
The grid wraps around: when a log reaches an edge of the grid, its next position is at the opposite edge
of the grid.

Determine the earliest time that the frog reaches the bottom-right corner of the grid, or that it can never
reach it.

Input
The first line contains two space-separated integers 2 ≤ R,C ≤ 50, the number of rows and columns in
the grid. The next R lines each contain C characters each, either a period (.) indicating no log on that
grid square, or one of ^v<> indicating a log and the direction in which it travels.

Output
Output one line containing the minimum number of time steps for the frog to reach the bottom-right
corner of the grid, or -1 if it can never reach the bottom-right corner.

Examples
standard input standard output

3 5
>^..v
...<.
.v..^

5

3 5
<....
.v...
...>.

31

2 2
><
><

-1

Page 6 of 7

Waterloo Fall 2021 Local
,

Note
In the first sample the frog can go right-down-left-left-down to reach the bottom-right corner.

Page 7 of 7

