The ternary expansion of a number is that number written in base 3.
A number can have more than one ternary expansion. A ternary
expansion is indicated with a subscript 3.
For example, 1 = 13 = 0.222...3,
and 0.875 = 0.212121...3.
The Cantor set is defined as the real numbers between 0 and 1 inclusive that have a ternary expansion that does not contain a 1. If a number has more than one ternary expansion, it is enough for a single one to not contain a 1.
For example, 0 = 0.000...3 and 1 = 0.222...3, so they are in the Cantor set. But 0.875 = 0.212121...3 and this is its only ternary expansion, so it is not in the Cantor set.
Your task is to determine whether a given number is in the Cantor set.
Each test case consists of a single line containing a number x written in decimal notation, with 0 <= x <= 1, and having at most 6 digits after the decimal point.
The last line of input is END. This is not a test case.
0 1 0.875 END
MEMBER MEMBER NON-MEMBER
